Acta Cryst. (1971). B27, 1610

Structure Cristalline de l'Oxotrioxalatoniobate d'Ammonium à une Molécule d'Eau (NH₄)₃NbO(C₂O₄)₃.H₂O

PAR G. MATHERN ET R. WEISS

Laboratoire de Cristallochimie associé au C.N.R.S., Institut de Chimie de Strasbourg, BP 296/R8, 67-Strasbourg, France

(Reçu le 8 octobre 1970)

The crystal structure of ammonium oxotrioxalatoniobate $(NH_4)_3NbO(C_2O_4)_3$. H₂O has been determined by X-ray diffraction. Crystals are triclinic with $a=9\cdot20\pm0\cdot01$, $b=13\cdot57\pm0\cdot02$, $c=7\cdot68\pm0\cdot01$ Å; $\alpha=93\cdot0\pm0\cdot2$, $\beta=123\cdot1\pm0\cdot2$, $\gamma=107\cdot9\pm0\cdot2^\circ$; Z=2; space group *P*I. The coordination polyhedron of niobium is a pentagonal bipyramid. Steric interactions between the ligands produce a displacement of the niobium out of the equatorial plane. The Nb-O (terminal) distance is 1.71 Å and the Nb-O (oxalate) mean distance is 2.13 Å.

Introduction

Les complexes oxaliques des métaux ont fait l'objet de nombreuses études. Une synthèse des travaux entrepris a été publiée par Krishnamurty & Harris (1961). Le groupement oxalique joue généralement le rôle de coordinat bidenté mais dans certains cas, les 4 atomes d'oxygène du coordinat $C_2O_4^{2-}$ peuvent jouer le rôle de donneurs (MacDonald & Spink, 1967). Les structures cristallines de nombreux complexes oxaliques de métaux sont connues (Van Niekerk & Schoening, 1952; Krogman, 1966, 1968; MacDonald & Spink, 1967; Glen, Silverton & Hoard, 1963; Viswamitra, 1962; Mattes & Krogman, 1964; Cotton & Morehouse, 1964, 1965). Alors que plusieurs complexes trioxaliques ont été étudiés par les méthodes radiocristallographiques, aucun complexe oxotrioxalique n'a été étudié par ces mêmes méthodes.

Nous avons entrepris l'étude de la structure de l'oxotrioxalatoniobate d'ammonium en vue de déterminer la stéréochimie du niobium dans ce composé. Vlasov, Lapitsky, Salimov & Strizhkov (1962), après avoir étudié la décomposition et le spectre infrarouge du composé, lui ont attribué une formule de sel double: $NH_4NbO_2(C_2O_4). 2HNH_4(C_2O_4)$ dans laquelle le niobium serait tétracoordonné.

Les seuls composés mononucléaires comportant l'oxocation NbO³⁺, dont la structure cristalline est connue, sont les fluorures K_2 NbOF₅ (Pinsker, 1966) et K_3 NbOF₆ (Hoard & Martin, 1941). Quelques études concernant l'oxocation NbO³⁺ ont été entreprises par spectrométrie infrarouge (Selbin, 1964, 1966; Wendling 1967); Muller (1970) a interprété les spectres infrarouge et Raman de l'oxotrioxalatoniobate de sodium en se basant sur les résultats du présent travail.

Ce travail a déjà fait l'objet d'une publication préliminaire (Mathern, Weiss & Rohmer, 1969).

Partie expérimentale

1. Préparation

Les cristaux d'oxotrioxalatoniobate d'ammonium ont été préparés conformément à la méthode de Russ (1902). Il suffit de dissoudre à chaud de l'oxyde de niobium précipité dans une solution équimoléculaire d'acide oxalique et d'oxalate d'ammonium. La solution est concentrée au bain-marie. L'excédent d'oxalate acide d'ammonium précipite d'abord; la solution devient ensuite sirupeuse et c'est l'oxotrioxalatoniobate d'ammonium qui cristallise sous forme de petites aiguilles. Les formes principales des cristaux sont {100}, {010}, {110}, {120}.

Le niobium a été dosé par gravimétrie de Nb_2O_5 , après calcination du produit à 900°. Les autres éléments ont été dosés par analyse élémentaire classique.

Les résultats des analyses sont les suivants: % théorique % trouvé

Nb	29,86	29,80
С	16,19	16,22
Η	3,17	3,16
N	9.44	9.55

Les pourcentages théoriques indiqués dans le tableau ont été calculés par rapport à la formule $(NH_4)_3NbO(C_2O_4)_3$. H₂O qui ne comprend qu'une molécule d'eau de cristallisation. D'autres auteurs ont proposé des formulations comportant deux ou bien trois demi-molécules d'eau (Guerchais & Spinner, 1965; Vlasov, Lapitsky, Salimov & Strizhkov, 1962; Russ, 1902). Par thermogravimétrie, nous avons observé le départ d'une seule molécule d'eau entre 100° et 180°, en partant de monocristaux rigoureusement dépourvus d'eau mère.

Afin de confirmer les positions des ions NH_4^+ , nous avons également préparé le sel $Rb_3NbO(C_2O_4)_3, H_2O$ isotype de $(NH_4)_3NbO(C_2O_4)_3, H_2O$. Ce sel se présente toujours sous la forme d'une poudre microcristalline.

2. Données cristallographiques et enregistrement des intensités

Nous avons choisi un cristal en forme d'aiguille de dimensions approximatives $0,10 \times 0,15 \times 1,5$ mm, collé à l'extrémité d'une tige de verre pour l'enregistrement des intensités des réflexions, l'axe d'allongement de l'aiguille était c. Les paramètres et le groupe spatial ont été déterminés à l'aide d'une chambre de précession étalonnée. Les cristaux appartiennent au système triclinique; le groupe spatial est $P\overline{1}$ (voir confirmation par la suite). Les paramètres ont les valeurs suivantes:

 $a = 9,20 \pm 0,01, b = 13,57 \pm 0,02, c = 7,68 \pm 0,01 \text{ Å};$ $\alpha = 93,0 \pm 0,2, \beta = 123,1 \pm 0,2, \gamma = 107,9 \pm 0,2^{\circ};$ $V = 737 \text{ Å}^3; Z = 2; M = 445,1.$

Une réduction de Delaunay (1933) n'a pas révélé de relation entre les paramètres permettant de supposer une symétrie supérieure. La densité des cristaux a été mesurée par picnométrie dans le xylène: elle vaut $1,99 \pm 0,03$; cette valeur est en accord avec la valeur théorique de 2,00 obtenue pour deux motifs $(NH_4)_3NbO(C_2O_4)_3$. H₂O par maille.

La mesure des intensités diffractées a été faite à l'aide d'un diffractomètre automatique Pailred. L'axe cristallographique c coïncidait avec l'axe ω de l'appareil. Nous avons mesuré 2071 réflexions correspondant à une élévation du compteur $\gamma < 60^\circ$. Le discriminateur était réglé de façon à laisser passer 95% du faisceau transmis, et la fenêtre était centrée sur le pic K α du molybdène. Le demi-angle de balayage valait 1,6° et la vitesse de balayage 1°.min⁻¹. Nous avons conservé 1122 réflexions indépendantes répondant au critère $\sigma(I)/I < 0,2$ avec

$$\frac{\sigma(I)}{I} = \frac{[I_M + \tau^2(F_1 + F_2)]^{1/2}}{[I_M - \tau(F_1 + F_2)]} .$$

 τ est le rapport du temps de comptage de la réflexion (I_M) sur le temps de comptage du fond continu de part et d'autre de la réflexion $(F_1 + F_2)$. Le fond continu a été mesuré pendant 10 sec de part et d'autre de chaque réflexion. La mesure des intensités (I_M) a été effectuée en maintenant le compteur fixe et en faisant varier l'angle ω de $\omega_0 - \Delta \omega$ à $\omega_0 + \Delta \omega$, où ω_0 est la valeur calculée de l'angle pour la réflexion considérée et $\Delta \omega$ le demi-angle de balayage. L'ouverture du compteur à scintillation valait 2°.

Les intensités ont été corrigées des facteurs de Lorentz et de polarisation. Nous n'avons pas effectué de corrections d'absorption ($\mu = 8,4$ cm⁻¹), car la variation du facteur de transmission était négligeable.

La comparaison des diagrammes de poudre de $Rb_3NbO(C_2O_4)_3$. H_2O et de $(NH_4)_3NbO(C_2O_4)_3$. H_2O nous permet d'affirmer que les deux composés sont isotypes. Nous avons indexé les premières raies du diffractogramme de poudre de l'oxotrioxalatoniobate de rubidium.

67,9%

22,6%

49,2%

	(a) Les	s quatre répa	rtitions poss	ibles							
	Position	X	Y	Z		Rép (1)	Rép (2	2) Ré	p (3)	Rép (4)	
	(1)	-0,2413	0,4000	0,012	28	H ₂ O	NH‡	N	H≵	NH‡	
	(2)	0,4899	0,1986	0,010	D1	NH#	H ₂ O	N	H₄+	NHŽ	
	(3)	0,4239	0,3059	0,28	13	NH₄	NH₊‡	H	90 [°]	NHÌ	
	(4)	0,3202	0,0405	0,50	83	NH ⁺	NHᠯ	N	Ĥ ∔	HSS	
			(b) Envir	onnement	des qua	tre positior	ns (Distai	nces en Å)		
			Position	(1)	(2)	(3)	(4)			
			(1)		3.06	>4	>	4			
			(2)	3,06	_	2,86	3,	54			
			(3)	>4	2,86		>	4			
			(4)	>4	3,54	>4	-	-			
(c)	Intensités c	bservées et d	calculées. Pou	udre Rb ₃ N	bO(C ₂ C	04)3 . H2O					
		hkl		Rép) (1)	Rép	(2)	Rép) (3)	Rép	o (4)
				Ic	Io	I _c	Io	I _c	Í Io	I _c	Io
1		010		4489	91	81	99	1849	98	529	99
2		110		2304	559	841	607	441	597	625	608
3		T01, 100		2952	1723	2141	1872	9250	1841	5800	1874
4		T11		81	217	784	236	3969	232	1936	236
5	0Ī1,	$020, 001, \overline{11}$	1, 120	22003	11284	13574	12257	9868	12054	18676	12272
6		110, 021		2132	1237	1157	1344	521	1322	1769	1346
7		011, <u>1</u> 21		3109	5617	11357	6101	17585	6000	8488	6109
8	2	11, T <u>2</u> 1, 1 <u>3</u> 0,	201	19035	35913	25578	39011	9228	38364	18122	39058
9		221		2916	6651	7056	7225	16	7105	16	7233
10		030		9	2245	2570	2439	976	2398	510	2442
	0	31, 120, 121,	021								
		$210, \overline{2}1\overline{1}, 2$	20	53379	46880	56985	50925	66381	50080	65796	50985

45,3%

Tableau 1

1611

R'

Les paramètres cristallins de ce composé, obtenus à l'aide d'une méthode d'affinement par moindres carrés, sont les suivants:

 $a=9.54\pm0.02$, $b=13.56\pm0.03$, $c=8.03\pm0.02$ Å; $\alpha = 95 \pm 0.5, \beta = 125 \pm 0.5, \gamma = 106 \pm 0.5^{\circ}$.

Le diffractogramme a été obtenu à l'aide d'un diffractomètre de poudre Philips. La surface des pics a été mesurée à l'aide d'un planimètre polaire. Nous avons ainsi mesuré l'intensité de 11 pics, l'angle 2θ variant de 0 à 24°.

Solution et affinement de la structure

La fonction de Patterson a permis de localiser tous les atomes, à l'exception des ions NH⁺ et de la molécule d'eau. La facilité avec laquelle ces atomes ont pu être localisés à l'aide de la fonction de Patterson, comme le fait que les positions ainsi trouvées s'affinent correctement, est une confirmation a posteriori du groupe centrosymétrique P1. Les autres atomes ont pu être facilement localisés à l'aide de la fonction différence.

Les facteurs de diffusion ont été calculés d'après la

Tableau 2. Paramètres atomiques

Les écarts-type sur les différents paramètres sont indiqués entre parenthèses. Les facteurs de température sont de la forme: $\exp\left[-(\beta_{11}h^2+\beta_{22}k^2+\beta_{33}l^2+2\beta_{12}hk+2\beta_{13}hl+2\beta_{23}kl)\right]$. Les coefficients BEQ sont les facteurs de température isotrope équivalents (Å²), calculés à partir des β_{ij} .

		x	V	Z	BEQ	
	Nb	0,02841 (16)	0,20751 (10)	0.48829 (21)	1.16	
	· O(1 <i>B</i>)	0,10094 (112)	0.17930 (68)	0.27296 (145)	2,61	
	$\mathbf{C}(1\mathbf{B})$	-0.02647(174)	0.12194 (101)	0,07496 (258)	2 34	
	$\dot{O}'(1)$	b0.00568(122)	010744(74)	-0.06354(165)	3,04	
	C(1A)	-0.22189 (167)	0.06830 (109)	0.03095(211)	2 74	
	O'(1A)	-0.36072(118)	0,00030(109)	0,03093(211) 0.14519(152)	2,74	
		-0,30072 (118)	0,00021(78)	-0,14516(155)	3,03	
	0(14)	-0,22131(104)	0,09052(72)	0,19182(154)	2,92	
	O(2B)	0,12510 (107)	0,31202(67)	0,78434 (141)	2,54	
	C(2B)	0,00633 (180)	0,31387 (108)	0,82193 (228)	2,72	
	O'(2B)	0,04661 (116)	0,37107 (74)	0,98460 (145)	3,11	
	C(2A)	-0,19752 (162)	0,23744 (102)	0,64230 (219)	2,35	
	O'(2A))0,32999 (114)	0,22823 (73)	0,64891 (158)	3,32	
	O(2A)	-0,21038 (109)	0,18381 (72)	0,48693 (153)	2.79	
	O(4)	0,10990 (114)	0.11797 (68)	0.62025 (153)	2.58	
	O(3A)	0.01039 (106)	0.34740 (66)	0 38083 (136)	237	
	C(3A)	0 16951 (166)	043437(124)	0.47881(215)	2,37	
	O'(3A)	0.17952(128)	0,43437 (124)	0.54585(178)	2,00	
	C(3R)	0.34404 (153)	0,32273(00)	0,54505(178)	4,10	
	O'(3B)	0,54404(155)	0,41142 (111)	0,02373(222)	2,04	
		0,30138 (133)	0,48211 (82)	0,72077(217)	6,48	
	O(3B)	0,31418 (104)	0,31613(71)	0,63502 (143)	2,40	
	N(I)	-0,24380 (151)	0,39840 (93)	0,01097 (188)	3,38	
	H ₂ O	0,49008 (132)	0,19703 (86)	0,01208 (181)	4,50	
	N(2)	0,42266 (148)	0,30628 (98)	0,27191 (21)	3,91	
	N(3)	0,31933 (138)	0,04104 (83)	0,50456 (180)	2,77	
	β ₁₁	β ₂₂	β ₃₃ ·	β_{12}	<i>β</i> 13	<i>B</i> 23
Nb	β_{11} 0.00389 (18)	β_{22} 0.00210 (8)	β_{33} · 0.00730 (34)	β_{12} 0.00064 (8)	β_{13}	β_{23}
Nb $O(1R)$	β_{11} 0,00389 (18) 0,01142 (174)	β_{22} 0,00210 (8) 0.00434 (69)	β_{33} · 0,00730 (34) 0.01430 (296)	β_{12} 0,00064 (8) - 0,00010 (85)	β_{13} 0,00269 (18) 0,00844 (180)	β_{23} 0,00137 (11) 0.00033 (110)
Nb O(1 <i>B</i>) C(1 <i>B</i>)	β_{11} 0,00389 (18) 0,01142 (174) 0.01731 (303)	β_{22} 0,00210 (8) 0,00434 (69) 0.00347 (104)	β_{33} . 0,00730 (34) 0,01430 (296) 0.02097 (515)	β_{12} 0,00064 (8) -0,00010 (85) 0.00530 (141)	β_{13} 0,00269 (18) 0,00844 (189) 0.01429 (328)	β_{23} 0,00137 (11) 0,00033 (110) 0.00580 (182)
Nb O(1 B) C(1 B) O'(1 B)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0 01915 (220)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00510 (86)	β_{33} · 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0.00364 (106)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0.01513 (324)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00562 (132)
Nb O(1 <i>B</i>) C(1 <i>B</i>) O'(1 <i>B</i>) C(1 <i>A</i>)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115)	β_{33} · 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00237 (12) ·	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132)
Nb O(1 <i>B</i>) C(1 <i>B</i>) O'(1 <i>B</i>) C(1 <i>A</i>)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01206 (180)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00600 (125)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01(516)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00239 (198)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167)
Nb O(1 <i>B</i>) C(1 <i>B</i>) O'(1 <i>B</i>) C(1 <i>A</i>) O'(1 <i>A</i>)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00762 (162)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01679 (200)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127)
Nb O(1 <i>B</i>) C(1 <i>B</i>) O'(1 <i>B</i>) C(1 <i>A</i>) O'(1 <i>A</i>) O(1 <i>A</i>)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120)
Nb O(1 <i>B</i>) C(1 <i>B</i>) O'(1 <i>B</i>) C(1 <i>A</i>) O'(1 <i>A</i>) O(1 <i>A</i>) O(2 <i>B</i>)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183)	$\begin{array}{c} \beta_{23} \\ 0,00137 (11) \\ 0,00033 (110) \\ 0,00580 (183) \\ 0,00263 (132) \\ 0,00138 (167) \\ -0,00046 (127) \\ -0,00114 (120) \\ 0,00018 (108) \end{array}$
Nb O(1B) C(1B) C(1A) O(1A) O(1A) O(2B) C(2B) C(2B)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00479 (70)	β_{33} 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181)
Nb O(1B) C(1B) O'(1B) O'(1A) O(1A) O(1A) O(2B) C(2B) O'(2B)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00645 (81)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98)	β_{13} 0,00269 (18) 0,00844 (189) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300) 0,00980 (194)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,000146 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114)
Nb O(1B) C(1B) C(1A) O'(1A) O(1A) O(2B) C(2B) C(2B) C(2A)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00600 (115) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00645 (81) 0,00416 (102)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01437 (445)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00301 (127)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00947 (300) 0,00947 (300) 0,00907 (274)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,00128 (167)
Nb O(1B) C(1B) O'(1A) O'(1A) O(1A) O(2B) C(2B) C(2B) O'(2B) C(2A)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00645 (81) 0,00645 (81) 0,00579 (77)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00399 (143) 0,00244 (98) 0,00301 (127) 0,00226 (95)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00947 (300) 0,00947 (300) 0,00980 (194) 0,00907 (274) 0,01086 (210)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,0018 (108) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,00087 (123)
Nb O(1B) C(1B) C(1A) O'(1A) O(2B) C(2B) C(2B) C(2A) O'(2A) O(2A)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00645 (81) 0,00416 (102) 0,00539 (77) 0,00530 (75)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334) 0,01878 (322)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00301 (127) 0,00226 (95) 0,00265 (92)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300) 0,00980 (194) 0,00907 (274) 0,01086 (210) 0,00864 (193)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,00087 (123) 0,00242 (124)
Nb O(1B) C(1B) O'(1B) O'(1A) O(1A) O(2B) C(2B) C(2B) O'(2B) C(2A) O(2A) O(2A) O(2A) O(2A)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01539 (197)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00645 (81) 0,00416 (102) 0,00579 (77) 0,00530 (75) 0,00414 (68)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334) 0,01878 (322) 0,02275 (324)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00301 (127) 0,00226 (95) 0,00265 (92) 0,00397 (92)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300) 0,00980 (194) 0,00907 (274) 0,00864 (193) 0,01402 (212)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00014 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,000242 (124) 0,000242 (124) 0,00027 (118)
Nb O(1B) C(1B) C(1A) O(1A) O(1A) O(2B) C(2B) C(2B) C(2A) O(2A) O(2A) O(2A) O(4) O(3A)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01539 (197) 0,01025 (174)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00445 (81) 0,00416 (102) 0,00579 (77) 0,00579 (77) 0,00579 (75) 0,00414 (68) 0,00378 (66)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334) 0,01275 (324) 0,02275 (324)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00301 (127) 0,00226 (95) 0,00265 (92) 0,00397 (92) 0,00248 (87)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00753 (183) 0,00947 (300) 0,00980 (194) 0,00907 (274) 0,01086 (210) 0,00864 (193) 0,01402 (212) 0,00515 (177)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,00028 (167) 0,00024 (123) 0,00242 (124) 0,00627 (118) 0,00290 (109)
Nb O(1B) C(1B) C(1A) O'(1A) O'(1A) O(2B) C(2B) C(2B) C'(2A) O'(2A) O'(2A) O(2A) O(2A) O(3A) C(3A)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01539 (197) 0,01025 (174) 0,01009 (262)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00645 (81) 0,00645 (81) 0,00579 (77) 0,00530 (75) 0,00414 (68) 0,00378 (66) 0,00487 (124)	β_{33} 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01547 (455) 0,01437 (445) 0,02445 (334) 0,01878 (322) 0,0275 (324) 0,01420 (277) 0,01477 (424)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00244 (98) 0,00226 (95) 0,00265 (92) 0,00248 (87) 0,00139 (136)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00947 (183) 0,00947 (300) 0,00940 (194) 0,00907 (274) 0,01086 (210) 0,00864 (193) 0,01402 (212) 0,00515 (177) 0,00319 (254)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,00027 (1123) 0,00242 (124) 0,00270 (109) -0,000023 (172)
Nb O(1B) C(1B) C(1A) O'(1A) O(1A) O(2B) C(2B) C(2B) O'(2B) C(2A) O'(2A) O(2A) O(2A) O(3A) C(3A)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01539 (197) 0,01025 (174) 0,01009 (262) 0,01658 (223)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00416 (102) 0,00416 (102) 0,00579 (77) 0,00530 (75) 0,00414 (68) 0,00487 (124) 0,00384 (83)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01437 (445) 0,01437 (445) 0,02445 (334) 0,01878 (322) 0,02275 (324) 0,01420 (277) 0,01177 (424) 0,03411 (412)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00301 (127) 0,00226 (95) 0,00265 (92) 0,00397 (92) 0,00248 (87) 0,00139 (136) 0,00310 (106)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00947 (300) 0,00947 (300) 0,00947 (274) 0,00966 (210) 0,00864 (193) 0,01402 (212) 0,00515 (177) 0,00319 (254) 0,00903 (240)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00128 (167) 0,00128 (167) 0,00028 (167) 0,00087 (123) 0,00242 (124) 0,00297 (118) 0,00290 (109) -0,00023 (172) 0,00484 (144)
Nb O(1B) C(1B) O'(1B) O'(1A) O(2B) C(2B) C(2B) O'(2B) C(2A) O'(2A) O'(2A) O'(2A) O'(2A) O'(3A) C(3A) O'(3A)	$β_{11}$ 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01259 (197) 0,01025 (174) 0,01009 (262) 0,01658 (223)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00445 (81) 0,00445 (81) 0,00445 (81) 0,00579 (77) 0,00530 (75) 0,00414 (68) 0,00378 (66) 0,00487 (124) 0,00384 (83) 0,0036 (107)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334) 0,01437 (322) 0,02275 (324) 0,01420 (277) 0,01177 (424) 0,03411 (412) 0,0268 (453)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00399 (143) 0,00244 (98) 0,00301 (127) 0,00265 (92) 0,00265 (92) 0,00265 (92) 0,00248 (87) 0,00139 (136) 0,00310 (106) 0,00092 (120)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300) 0,00980 (194) 0,00980 (194) 0,009864 (193) 0,01086 (210) 0,00864 (193) 0,01086 (210) 0,00315 (177) 0,00319 (254) 0,00903 (240) 0,0019 (248)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00014 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,000242 (124) 0,00627 (118) 0,00240 (109) -0,00023 (172) 0,00484 (144) 0,00253 (163)
Nb O(1B) C(1B) O'(1B) O'(1A) O(1A) O(2B) C(2B) O'(2B) C(2A) O'(2A) O(2A) O(2A) O(2A) O(2A) O(3A) C(3A) C(3B) O'(3B)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01025 (174) 0,01009 (262) 0,01658 (223) 0,00686 (237) 0,01612 (200)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00445 (81) 0,00416 (102) 0,00579 (77) 0,00530 (75) 0,00414 (68) 0,00378 (66) 0,00378 (66) 0,00378 (66) 0,00384 (83) 0,00306 (107) 0,00514 (98)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334) 0,01478 (322) 0,01478 (322) 0,01478 (322) 0,01477 (324) 0,01477 (424) 0,01477 (424) 0,03411 (412) 0,02068 (453) 0,02552 (544)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00301 (127) 0,00226 (95) 0,00265 (92) 0,00265 (92) 0,00248 (87) 0,00139 (136) 0,00310 (106) 0,00092 (120) -0 00060 (109)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300) 0,00980 (194) 0,00907 (274) 0,01086 (210) 0,00864 (193) 0,01402 (212) 0,00515 (177) 0,00319 (254) 0,00903 (240) 0,00180 (248) 0,00180 (248) 0,00180 (248)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,00024 (124) 0,00242 (124) 0,00290 (109) -0,00023 (172) 0,00484 (144) 0,00273 (163) 0,00728 (163)
Nb O(1B) C(1B) C(1A) O'(1A) O(1A) O(2B) C(2B) C(2B) C(2A) O'(2A) O(2A) O(2A) O(3A) C(3A) C(3B) O'(3B) O(3B)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01539 (197) 0,01025 (174) 0,01009 (262) 0,01658 (223) 0,00686 (237) 0,01122 (220) 0,0121 (174)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00445 (81) 0,00416 (102) 0,00579 (77) 0,00579 (75) 0,00414 (68) 0,00378 (66) 0,00378 (66) 0,00384 (83) 0,00306 (107) 0,00514 (98) 0,00359 (75)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334) 0,01878 (322) 0,02275 (324) 0,01878 (322) 0,0275 (324) 0,01177 (424) 0,01177 (424) 0,03411 (412) 0,02068 (453) 0,05552 (544) 0,01884 (297)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00399 (143) 0,00246 (95) 0,00265 (92) 0,00248 (87) 0,00139 (136) 0,00139 (136) 0,00092 (120) -0,00060 (109) 0,00235 (85)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300) 0,00980 (194) 0,00907 (274) 0,01086 (210) 0,00864 (193) 0,01402 (212) 0,00515 (177) 0,00319 (254) 0,00903 (240) 0,00180 (248) 0,00357 (268) 0,00357 (268) 0,00357 (268)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00128 (167) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,00027 (118) 0,00242 (124) 0,00627 (118) 0,00290 (109) -0,00023 (172) 0,00484 (144) 0,00253 (163) 0,00728 (173) 0,0026 (111)
Nb O(1B) C(1B) C(1A) O'(1A) O'(1A) O(2B) C(2B) C(2B) C'(2A) O'(2A) O'(2A) O(2A) O'(3A) C(3A) C'(3B) O'(3B) O'(3B) N(1)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01539 (197) 0,01025 (174) 0,01025 (174) 0,01025 (174) 0,01058 (223) 0,00686 (237) 0,01122 (220) 0,01021 (174) 0,01021 (174) 0,01027 (263)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00445 (81) 0,00445 (81) 0,00445 (81) 0,00445 (81) 0,00579 (77) 0,00530 (75) 0,00414 (68) 0,00378 (66) 0,00487 (124) 0,00384 (83) 0,00306 (107) 0,00514 (98) 0,00359 (75) 0,00514 (97)	β_{33} 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01547 (455) 0,01437 (445) 0,02445 (334) 0,01878 (322) 0,0275 (324) 0,01420 (277) 0,01177 (424) 0,01420 (277) 0,01177 (424) 0,03411 (412) 0,02068 (453) 0,05552 (544) 0,01884 (297) 0,01884 (296)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00244 (98) 0,00226 (95) 0,00265 (92) 0,00248 (87) 0,00248 (87) 0,00139 (136) 0,00310 (106) 0,00092 (120) -0,00060 (109) 0,00235 (85) 0,00232 (127)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00020 (174) 0,00947 (300) 0,00947 (300) 0,00940 (194) 0,00907 (274) 0,01086 (210) 0,00986 (193) 0,01402 (212) 0,00515 (177) 0,00319 (254) 0,00903 (240) 0,00180 (248) 0,00357 (268) 0,00303 (183) 0,00303 (262)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,00027 (118) 0,00242 (124) 0,0027 (118) 0,00290 (109) -0,00023 (172) 0,00484 (144) 0,00253 (163) 0,00296 (111) 0,00296 (111)
Nb O(1B) C(1B) O'(1A) O'(1A) O(2B) C(2B) C(2B) O'(2B) C(2A) O'(2A) O(2A) O(2A) O(2A) O(2A) O(3A) C(3B) O'(3B) O'(3B) N(1) N(1)	$β_{11}$ 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01025 (174) 0,01009 (262) 0,01058 (223) 0,01025 (220) 0,01021 (174) 0,01770 (263) 0,01770 (263) 0,01770 (264)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00416 (102) 0,00416 (102) 0,00579 (77) 0,00530 (75) 0,00414 (68) 0,00487 (124) 0,00378 (66) 0,00487 (124) 0,00364 (83) 0,00364 (107) 0,00514 (98) 0,00381 (97) 0,00581 (97) 0,00581 (97)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334) 0,01437 (445) 0,02275 (324) 0,01420 (277) 0,01177 (424) 0,021878 (322) 0,02275 (324) 0,01177 (424) 0,03411 (412) 0,02552 (544) 0,01854 (396) 0,02552 (273)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00399 (143) 0,00244 (98) 0,00301 (127) 0,00265 (92) 0,00265 (92) 0,00265 (92) 0,00248 (87) 0,00139 (136) 0,00139 (136) 0,00310 (106) 0,00092 (120) -0,00060 (109) 0,00255 (85) 0,00522 (127) 0,00522 (127)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300) 0,00980 (194) 0,00980 (194) 0,00980 (274) 0,01086 (210) 0,00864 (193) 0,01402 (212) 0,001515 (177) 0,00319 (254) 0,00180 (248) 0,00180 (248) 0,00357 (268) 0,00303 (183) 0,00903 (262)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00144 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,00028 (167) 0,00027 (118) 0,00242 (124) 0,00242 (124) 0,00242 (124) 0,00242 (124) 0,00242 (123) 0,00242 (144) 0,00253 (163) 0,00253 (163) 0,00296 (111) 0,00296 (111) 0,00297 (152)
Nb O(1B) C(1B) O'(1B) O'(1A) O(1A) O(2B) C(2B) O'(2B) O'(2B) O'(2B) O'(2A) O(2A) O(2A) O(2A) O(2A) O(3A) C(3A) C(3B) O'(3B) O'(3B) N(1) H ₂ O	$β_{11}$ 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01017 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01039 (197) 0,01025 (174) 0,01009 (262) 0,01658 (223) 0,00686 (237) 0,01021 (174) 0,01770 (263) 0,01747 (241) 0,01747 (241)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00498 (116) 0,00445 (81) 0,00416 (102) 0,00579 (77) 0,00530 (75) 0,00414 (68) 0,00378 (66) 0,00487 (124) 0,00378 (66) 0,00378 (67) 0,00359 (75) 0,00581 (97) 0,00794 (92) 0,00794 (92) 0,0059 (105)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334) 0,01478 (322) 0,01478 (322) 0,01478 (322) 0,01477 (424) 0,02455 (324) 0,01177 (424) 0,02168 (453) 0,05552 (544) 0,01854 (396) 0,02362 (373) 0,02362 (373)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00399 (143) 0,00244 (98) 0,00301 (127) 0,0026 (95) 0,00265 (92) 0,00248 (87) 0,00139 (136) 0,00310 (106) 0,00092 (120) -0,00060 (109) 0,00235 (85) 0,00245 (81) 0,00235 (85) 0,00245 (119) 0,002478 (119) 0,00244 (120)	β_{13} 0,00269 (18) 0,00844 (189) 0,01429 (328) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300) 0,00980 (194) 0,00907 (274) 0,00907 (274) 0,00864 (193) 0,0186 (210) 0,00864 (193) 0,01086 (210) 0,00864 (193) 0,01086 (210) 0,00355 (177) 0,00319 (254) 0,00903 (240) 0,00180 (248) 0,00357 (268) 0,00303 (183) 0,00903 (262) 0,01137 (238)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,00024 (124) 0,00242 (124) 0,00242 (124) 0,00290 (109) -0,00023 (172) 0,00484 (144) 0,00253 (163) 0,00728 (173) 0,00294 (152) 0,00675 (148)
Nb O(1B) C(1B) C(1A) O'(1A) O(1A) O(2B) C(2B) C(2B) C(2A) O'(2A) O(2A) O(2A) O(2A) O(3A) C(3A) C(3A) C(3B) O'(3B) O(3B) N(1) H ₂ O N(2)	β_{11} 0,00389 (18) 0,01142 (174) 0,01731 (303) 0,01915 (220) 0,01264 (268) 0,01098 (189) 0,00763 (163) 0,01071 (172) 0,01682 (304) 0,01543 (200) 0,01294 (278) 0,01183 (190) 0,01071 (183) 0,01025 (174) 0,01025 (174) 0,01025 (223) 0,01658 (223) 0,00686 (237) 0,01122 (220) 0,0121 (174) 0,01770 (263) 0,01747 (241) 0,01288 (244)	β_{22} 0,00210 (8) 0,00434 (69) 0,00347 (104) 0,00610 (86) 0,00600 (115) 0,00701 (84) 0,00621 (77) 0,00479 (70) 0,00479 (70) 0,00479 (70) 0,0045 (81) 0,00416 (102) 0,00579 (77) 0,00579 (77) 0,00579 (75) 0,00414 (68) 0,00378 (66) 0,00378 (66) 0,00384 (83) 0,00364 (107) 0,00314 (98) 0,00359 (75) 0,00514 (97) 0,00571 (92) 0,00672 (105) 0,00072 (105)	β_{33} . 0,00730 (34) 0,01430 (296) 0,02097 (515) 0,01733 (344) 0,00233 (138) 0,01679 (315) 0,01542 (309) 0,01449 (281) 0,01257 (455) 0,01192 (281) 0,01437 (445) 0,02445 (334) 0,01878 (322) 0,02475 (324) 0,01275 (324) 0,01177 (424) 0,01177 (424) 0,01177 (424) 0,01177 (424) 0,01177 (424) 0,03411 (412) 0,02068 (453) 0,05552 (544) 0,01854 (396) 0,02362 (373) 0,02991 (461)	β_{12} 0,00064 (8) -0,00010 (85) 0,00530 (141) 0,00364 (106) 0,00233 (138) 0,00168 (100) 0,00058 (86) 0,00141 (85) 0,00389 (143) 0,00244 (98) 0,00301 (127) 0,00226 (95) 0,00265 (92) 0,00248 (87) 0,00139 (136) 0,00310 (106) 0,00092 (120) -0,00060 (109) 0,00235 (85) 0,00522 (127) 0,00248 (119) 0,00214 (123)	β_{13} 0,00269 (18) 0,00844 (189) 0,01513 (234) 0,00705 (271) 0,00267 (196) 0,00620 (174) 0,00753 (183) 0,00947 (300) 0,00980 (194) 0,00907 (274) 0,01086 (210) 0,00864 (193) 0,01402 (212) 0,001515 (177) 0,00319 (254) 0,00903 (240) 0,00180 (248) 0,00357 (268) 0,00303 (183) 0,00182 (276) 0,00182 (276)	β_{23} 0,00137 (11) 0,00033 (110) 0,00580 (183) 0,00263 (132) 0,00138 (167) -0,00046 (127) -0,00114 (120) 0,00018 (108) 0,00124 (181) -0,00062 (114) 0,00128 (167) 0,00242 (124) 0,00242 (124) 0,00247 (118) 0,00249 (152) 0,00248 (152) 0,00590 (172) 0,00590 (172)

relation de Vand, Eiland & Pepinsky (1957) revue par Forsyth & Wells (1959):

$$f_{0j} = A \exp\left\{\frac{-a\sin^2\theta}{\lambda^2}\right\} + B \exp\left\{\frac{+b\sin^2\theta}{\lambda^2}\right\} + C.$$

Les constantes A, B, C, a, b ont été calculées par Moore (1963). Les corrections de dispersion anomale ont été appliquées au niobium:

$$f_i = f_{0i} + \Delta f' + i\Delta f''$$

Les coefficients $\Delta f'$ et $\Delta f''$ sont extraits de International Tables for X-ray Crystallography (1962). Les affinements par moindres carrés ont été réalisés à l'aide du programme SFSL5 (Prewitt, 1966). La fonction minimisée est $\Sigma \omega(|F_o| - |F_c|)^2$, où F_o et F_c sont les facteurs de structures observés et calculés et ω une pondération définie de la façon suivante:

 $F_c < B_1: \omega = \frac{1}{16}$ $B_1 < F_c < B_2: \omega \quad \text{croît linéairement de } \frac{1}{16} \text{ à l}$ $B_2 < F_c < B_3: \omega = 1$ $B_3 < F_c < B_4: \omega \quad \text{décroît linéairement de l à } \frac{1}{16}$ $F_c > B_4: \omega = \frac{1}{16}.$ Les bornes B_1 , B_2 , B_3 , B_4 valent respectivement 10, 15, 70 et 200 e⁻.

L'affinement des coordonnées et facteurs d'agitation thermique isotrope de tous les atomes y compris ceux des 3 atomes d'azote et de l'atome d'oxygène de la molécule d'eau, pour lesquels nous avons utilisé les mêmes facteurs de diffusion, nous a donné un facteur de reliabilité $R_1 = \Sigma(|F_o| - |F_c|)/\Sigma|F_o|$ de 0,065.

En effet, il était impossible de faire la distinction entre les 3 atomes d'azote et l'atome d'oxygène de la molécule d'eau d'après les hauteurs relatives des 4 pics sur les sections de la série différence. Le nombre de répartitions à étudier était de 4, la molécule d'eau pouvant occuper chacune des 4 positions notées (1), (2), (3), (4) dans le Tableau (1*a*). L'ambiguïté a été levée en cherchant systématiquement l'environnement de chacune de ces 4 positions [Tableau 1(*b*)]: on constate que la position (2) est située à 2,85 Å de la position (3) et à 3,09 Å de la position (1). Il est très peu probable que la position (2) soit occupée par un ion NH₄⁺: s'il en était ainsi, deux ions NH₄⁺ seraient au contact, ce qui correspondrait à une répulsion électrostatistique très forte; par contre, si la position (2) est occupée par la

Tableau 3.	Environnement	des ior	ıs NH ₄ +	et de	la molécule	d'eau

	<i>I</i> :N(1)						_				
J	EQ	ΤХ	Ϋ́ΤΥ	ΤZ	D	J	EQ	ТΧ	ΤY	ΤZ	D
O'(3B)	1	T	0	T	2.819 Å	N(2)	1	0	0	0	2,858 Å
O(3A)	ī	Ō	Ó	0	2,823	O(4)	1	0	0	1	2,882
O'(2B)	1	Ó	0	T	2,917	O(1A)	1	1	0	0	3,018
H ₂ O	1	T	0	0	3,062	N(1)	1	1	0	0	3,062
O(2A)	1	0	0	T	3,080	O'(1A)	2	0	0	0	3,110
O'(2B)	2	0	1	1	3,084						
O(3B)	1	T	0	T	3,190						
		I:N	(2)					<i>I</i> :N	(3)		
J	EQ	<i>I</i> :N TX	(2) TY	ΤZ	D	J	EQ	<i>I</i> :N TX	(3) TY	ΤZ	D
J O'(3B)	EQ 2	I:N TX 1	(2) TY 1	TZ 1	D 2,729	J O'(1A)	EQ 1	<i>I</i> :N TX 1	(3) TY 0	Т Z 1	D 2,911
J O'(3B) H ₂ O	EQ 2 1	<i>I</i> :N TX 1 0	(2) TY 1 0	TZ 1 0	D 2,729 2,858	J O'(1A) O(2A)	EQ 1 2	<i>I</i> :N TX 1 0	(3) TY 0 0	T Z 1 1	D 2,911 2,921
J O'(3B) H ₂ O O(1B)	EQ 2 1 1	<i>I</i> :N TX 1 0 0	(2) TY 1 0 0	TZ 1 0 0	D 2,729 2,858 2,936	J O'(1A) O(2A) O(4)	EQ 1 2 1	<i>I</i> :N TX 1 0 0	(3) TY 0 0 0	TZ 1 1 0	D 2,911 2,921 2,932
J O'(3B) H ₂ O O(1B) O'(3A)	EQ 2 1 1 2	<i>I</i> :N TX 1 0 1	(2) TY 1 0 0 1	TZ 1 0 1	D 2,729 2,858 2,936 3,012	J O'(1A) O(2A) O(4) O'(2A)	EQ 1 2 1 1	<i>I</i> :N TX 1 0 0 1	(3) TY 0 0 0 0	TZ 1 1 0 0	D 2,911 2,921 2,932 2,976
J O'(3B) H ₂ O O(1B) O'(3A) O'(2A)	EQ 2 1 1 2 1	<i>I</i> :N TX 1 0 0 1 1	(2) TY 1 0 0 1 0	TZ 1 0 1 1 0	D 2,729 2,858 2,936 3,012 3,049	J O(1A) O(2A) O(4) O'(2A) O'(1B)	EQ 1 2 1 1 2	<i>I</i> :N TX 1 0 0 1 0	(3) TY 0 0 0 0 0	TZ 1 1 0 0 0	D 2,911 2,921 2,932 2,976 2,984
J O'(3B) H ₂ O O(1B) O'(3A) O'(2A)	EQ 2 1 1 2 1	<i>I</i> :N TX 1 0 1 1	(2) TY 1 0 1 0	TZ 1 0 1 1 0	D 2,729 2,858 2,936 3,012 3,049	J O(1A) O(2A) O(4) O'(2A) O'(1B) O'(1A)	EQ 1 2 1 1 2 2	<i>I</i> :N TX 1 0 0 1 0 0	(3) TY 0 0 0 0 0 0	TZ 1 0 0 0 0	D 2,911 2,921 2,932 2,976 2,984 3,047

D est la distance entre les atomes *I* et *J*. EQ est le numéro de la position équivalente de l'atome *J*, dans l'ordre où elles sont données dans *International Tables for X-ray Crystallography* (1969). EQ=1 pour la position (x, y, z); EQ=2 pour la position $(\bar{x}, \bar{y}, \bar{z})$. TX, TY, TZ sont les translations apportées à l'atome *J* suivant les axes, en unités relatives. Nous n'avons porté dans le Tableau que les distances *D* inférieures à 3,20 Å.

Fig. 1. Disposition des atomes dans la maille (vue stéréoscopique).

molécule d'eau, il est raisonnable de supposer que les deux ions NH⁺ voisins forment des liaisons hydrogène avec celle-ci, ce qui explique la proximité des trois positions. Pour confirmer la position de la molécule d'eau nous avons étudié la structure du sel de rubidium isotype du sel d'ammonium. L'ion Rb⁺, qui a un rayon ionique très voisin de celui de l'ion NH₄⁺, occupe des positions voisines de celles de NH4 à l'intérieur de la maille; la distinction entre les ions Rb⁺ et la molécule d'eau est très aisée. Comme nous n'avons pas pu obtenir de cristaux suffisamment gros pour réaliser un enregistrement sur monocristal, nous avons utilisé le diffractogramme de poudre du sel de rubidium pour la détermination de la structure. Nous avons représenté dans le Tableau 1(c) les intensités observées et calculées de chaque raie, dans les 4 répartitions et le facteur de qualité $R' = \Sigma |I_o - I_c| / \Sigma I_o$ correspondant. Il en ressort très nettement que la molécule d'eau occupe la position (2).

Par la suite, nous avons attribué à tous les atomes des facteurs d'agitation thermique anisotrope. Nous n'avons pas cherché à localiser les atomes d'hydrogène. Les valeurs finales des paramètres atomiques sont indiquées dans le Tableau 2. Aucun de ces paramètres ne s'est déplacé de plus du sixième de son écart type au cours du dernier cycle d'affinement. Les écarts-type ont été calculés à partir des éléments diagonaux de l'inverse de la matrice des équations normales. Les valeurs finales des facteurs de reliabilité sont $R_1 = 0,046$; $R_2 = \{ \Sigma \omega [|F_o| - |F_c|]^2 / \Sigma \omega |F_o|^2 \}^{1/2} = 0,060.$ Les résidus sur la dernière série différence sont tous inférieurs à $0,5 e^{-}$ Å⁻³, en valeur absolue.

Discussion

La structure cristalline de l'oxotrioxalatoniobate d'ammonium se compose d'ions NH_4^+ , $NbO(C_2O_4)_3^{3-}$ et de molécules d'eau de cristallisation. Les ions ammonium s'intercalent entre les anions complexes plus volumineux. L'environnement des atomes d'azote est donné dans le Tableau 3. Les contacts les plus courts correspondent très probablement à des liaisons hydrogène. Les distances correspondantes sont conformes aux valeurs données par Pimentel & MacClellan (1960) pour la distance N-H \cdots O. La molécule d'eau est entourée de deux atomes d'oxygène et de deux atomes d'azote formant un tétraèdre déformé. L'empilement des différents motifs à l'intérieur de la maille est représenté sur la Fig. 1, obtenue à l'aide du programme ORTEP (Johnson, 1965).

Tableau 4. Distances et angles dans l'ion NbO($(C_2O_4)_3^3$ -

Les écarts-type sont indiqués entre parenthèses.

Nb-C)				O–C	
Nb-O $(1A)$ Nb-O $(1B)$	2,122 (7) 2,150 (13	Å)		O(1 O(1	A)-C(1A) B)-C(1B)	1,279 (18) Å 1,289 (15)
ND- $O(2A)$	2,114(12)			0(2	2A)-C($2A$)	1,292 (21)
Nb-O(2B)	2,157 (10			0(2	(B) - C(2B)	1,280 (22)
Nb=O(3R)	2,120 (10)		0(3	(A) - C(3A)	1,321 (14)
Nb-O(4)	1,710 (10)		0(.	<i>B</i>)-C(3 <i>B</i>)	1,235 (18)
(D'-C				C-C	2
O'(1A) - C(1A)	1,22	27 (12)		C(1	A)-C(1 B)	1.544 (23)
O'(1B) - C(1B)	1,19	96 (26)		Č(2	(A) - C(2B)	1,526 (13)
O'(2A)-C(2A)	1,2	16 (22)		C(3	A - C(3B)	1,519 (20)
O'(2B)-C(2B)	1,2	32 (20)				
O'(3A)-C(3A)	1,20	04 (21)				
O'(3B) - C(3B)	1,2	12 (14)				
N	√b–O–C				0-C'-0'	
Nb-O(1A)-C(1.	A)	122,0 (0,9)°		O(1A) - C(1A)	A)-O'(1A)	125,5 (1,4)°
Nb- $O(1B)-C(1)$	B)	121,5 (0,9)		O(1B) - C(1)	B) - O'(1B)	127,6 (1,5)
Nb-O(2A)C(2A))	122,0 (0,9)		O(2A) - C(2A)	A)-O'(2A)	124,9 (1,4)
Nb-O(2B)C(2B)	2 <i>B</i>)	120,0 (0,9)		O(2B)-C(2)	B) - O'(2B)	125,1 (1,4)
ND- $O(3A)-C(3)$	A)	117,2 (0,9)		O(3A) - C(3)	A) - O'(3A)	124,9 (1,5)
ND - O(3B) - C(3)	В)	117,7 (0,9)		O(3B) - C(3)	B) - O'(3B)	123,0 (1,4)
(0-C-C				O'-C-C	
O(1A)-C(1A)C(1A)	(1 <i>A</i>)	113,0 (1,3)°		O'(1A) - C(1	A)–C(1 B)	121,4 (1,4)°
O(1B) - C(1B) - C(1B	C(1 <i>B</i>)	111,1 (1,3)		O'(1B) - C(1	B)–C(1 A)	121,3 (1,4)
O(2A)-C(2A)-O(2A)	C(2B)	112,0 (1,3)		O'(2A)-C(2	(A)-C(2B)	123,1 (1,4)
O(2B)-C(2B)-O(2B)-O(2B)	C(2A)	113,6 (1,3)		O'(2B)-C(2)	(B)-C(2A)	121,3 (1,4)
O(3A) - C(3A) - C(3A	C(3 <i>B</i>)	112,7 (1,3)		O'(3A) - C(3)	A)–C(3 B)	122,4 (1,4)
O(3B)-C(3B)-C(3B)	C(3A)	116,1 (1,3)		O'(3B)-C(3)	B)-C(3A)	120,9 (1,4)
		O(A)-N	Nb-O(B))		
		O(1A)-Nb-O(1B)	3) '	72,0 (0,7)		
		O(2A)-Nb-O(2A)	B) '	72,4 (0,7)		

O(3A)-Nb-O(3B)

74,5 (0,7)

La structure de l'ion NbO $(C_2O_4)_3^{3-}$ est représentée sur la Fig. 2. Le niobium est heptacoordonné et le polyèdre de coordination est une bypyramide pentagonale. Ce polyèdre présente toutefois des déformations appréciables par rapport à la bipyramide pentagonale idéale de symétrie D_{5h} . En effet, les 5 atomes en position équatoriale s'écartent significativement d'un plan moyen (écart moyen: 0.04 Å) et les deux liaisons Nb-O axiales font des angles de 7 et 10° avec la normale au plan moyen (Fig. 3). Les deux oxygènes en position axiale sont pratiquement équidistants du plan. Le niobium est situé à 0,18 Å au-dessus du plan moyen, du côté de l'oxygène O(4).

De cette façon l'interaction stérique entre l'oxygène O(4) et les 5 oxygènes en position équatoriale est faible. L'angle O-Nb-O est légèrement plus grand dans le

Tableau 5. Plans moyens

N est le nombre d'atomes définissant le plan moyen. Les équations des plans moyens sont UX + VY + WZ = D, en coordonnées trirectangles. La matrice de passage des coordonnées relatives aux coordonnées absolues (Å) dans le système trirectangle est

$$M = \left| \begin{array}{ccc} 9,200 & -4,170 & -4,190 \\ 0,000 & 12,913 & -1,777 \\ 0,000 & 0,000 & 6,186 \end{array} \right|$$

 d_m est la déviation maximum (Å) au plan. Le coefficient χ_0^2 est égal à $\sum d_i^2/\sigma_i^2$ où les distances des atomes au plan moyen, et les σ_i les écarts-type correspondants sur ces distances. *P* est la probabilité (dans le cas d'une distribution en χ^2) d'obtenir un coefficient χ^2 supérieur à χ_0^2 . Les coefficients *U*, *V*, *W*, *D* ont été calculés par moindres carrés d'après la méthode de Shomaker, Wasser, Marsh & Bergman (1959). Les angles dièdres sont les suivants:

			Pla	ans a					
			2-	4 15,5°					
			2-	6 88,7					
			4-	6 73,5					
Plan	Ν		U	V	W	D	dm	χ	Р
1	5	O(1B), O(1A), O(2B),	-0,2423	0,8719	-0,4256	1,1234	0,060	93	< 0,001
		O(2A), O(3B)							
2	6	O(1B), C(1B), O'(1B),	-0,3244	0,8983	-0,2963	1,4967	0,040	61	< 0,001
		C(1A), O'(1A), O(1A)						-	
3	7	Nb, $O(2B)$, $C(2B)$, $O'(2B)$,	-0,1172	0,8841	-0,4525	0,5455	0,020	5	0,30
		C(2A), O'(2A), O(2A)							0.00
4	6	O(2B), C(2B), O'(2B)	-0,1097	0,8826	-0,4572	0,4805	0,006	1	0,80
		C(2A), O'(2A), O(2A)							0.001
5	7	Nb, O(3 <i>B</i>), C(3 <i>B</i>), O'(3 <i>B</i>)	0,6083	0,0968	0,7878	4,1636	0,140	494	< 0,001
		C(3A), O'(3A), O(3A)						-	
6	6	O(3B), C(3B), O'(3B),	-0,6398	-0,0038	0,7685	3,6956	0,020	5	0,20
		C(3A), O'(3A), O(3A)							

Fig. 2. L'ion NbO($(C_2O_4)_3^3$: géométrie et nomenclature des atomes.

groupement oxalique (3), ce qui entraîne simultanément une légère contraction des deux angles Nb-O-C de ce même groupement (Tableau 4).

Les liaisons Nb-O sont de deux sortes: d'une part, la liaison multiple Nb-O(4) formée avec l'oxygène en position teminale, d'autre part, les liaisons formées avec les atomes d'oxygène appartenant aux 3 groupements oxaliques, dont la longueur vaut 2,13 Å. La longueur de la liaison multiple Nb-O est inférieure à celle trouvé par Flynn & Stucky (1969) dans l'ion Nb₆O⁸⁻₁₉: 1,71 Å au lieu de 1,77 Å mais elle est voisine de celles trouvées par Pinsker (1966) ou par Kamenar & Prout (1970).

Les distances et angles formés par les six atomes de

Tableau 6. Facteurs de structure calculés et observés $10|F_c|et|F_o|$.

HKL	fC	FO	нкц	FC F7	нк	ι	FC	FO	HK	L FC	FD	нкц	FC	FO	HKL	FC	FO
-27-6-5-2-1-1-7-14-5-4-1-1-2-3-4-5-4-5-4-1-7-14-5-4-7-5-4-7-5-4-3-7-5-4-5-7-14-13-13-13-12-12-12-12-11-11-10-10-10-10-9-9-9-7-7-7-7-7-7-7-7-7-7-7-6-6-6-6-5-5-5-5-4-4-4-4-4-4-4-4-4-4-4-4	211 -311 -2023 -2024 -2021 -2025 -20	12232221264432022229990101162222272336452222222222222222222222222222222222	- 7865433332000000000000000000000000000000000	$\begin{array}{c} -288 & 251\\ -214 & 214\\ -352 & 351\\ -540 & 542\\ -384 & 4046\\ -466 & 614\\ -466 & 614\\ -466 & 614\\ -466 & 614\\ -467 & 500\\ -1080 & 956\\ -271 & 2080 & 956\\ -271 & 2080 & 956\\ -271 & 2080 & 956\\ -271 & 2080 & 956\\ -271 & 2141 & 2141\\ 2141 & 2141\\ 2141 & 2141\\ 2141 & 2141\\ 2141 & 2141\\ 2141 & 2141\\ 2141 & 2141\\ 217 & 216\\ -270 & 2144\\ -255 & 250\\ -1131 & 156\\ -271 & 2144\\ -255 & 250\\ -131 & 156\\ -271 & 2144\\ -255 & 250\\ -271 & 2144\\ -255 & 250\\ -271 & 2144\\ -255 & 250\\ -271 & 2144\\ -255 & 250\\ -271 & 2144\\ -255 & 250\\ -271 & 2144\\$	5 4 5 2 1 0 1 2 5 4 5 7 5 4 7 ? 2 2 2 1 1 1 1 1 0 0 0 0 0 0 14 3 13 13 13 13 12 12 12 11 11 11 11 10 0 10 0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	154 155 155 154 152 154 152 154 152 154 154 154 154 154 154 154 154 154 154	**************************************	$ \begin{array}{c} \mathbf{i} & -271 \\ \mathbf{i} & -174 \\ \mathbf{i} & -276 \\ \mathbf{i} & -176 \\ \mathbf{i} & -256 \\ \mathbf{i} & -196 \\ \mathbf{i} & -256 \\ \mathbf{i} & -196 \\ \mathbf{i} & -256 \\ \mathbf{i} & -$	265 267 267 267 267 267 267 267 267 267 272 267 272 277 277	-20123456541111111111111111111111111111111111	$\begin{array}{c} +478\\ -7670\\ -7670\\ -7670\\ -334\\ -1577\\ -336\\ -1577\\ -336\\ -1577\\ -74761\\ 1496\\ -2435\\ -74761\\ 1496\\ -2437\\ 2497\\ -2435\\ -2437\\ 2497\\ -2437\\ -$	488 2730 3332 454 4995 2324 4995 2324 4995 2324 4995 224 4995 224 4995 224 4995 224 4995 224 4995 224 4995 224 4995 224 4995 2227 2332 4425 234 4925 2327 24425 2442 2476 2476 2476 2476 2476 2476 2476	-2 5 6 6 5 3 1 -2 -1 5 6 1 -2 -2 5 6 5 3 2 1 2 -2 5 6 6 5 5 3 2 1 2 -2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} -629\\ -629\\ -284\\ -187\\ -286\\ -286\\ -187\\ -862\\ -286\\ -155\\ -224\\ -155\\ -224\\ -155\\ -224\\ -155\\ -224\\ -155\\ -224\\ -155\\ -224\\ -245\\ -246\\ -247\\ -247\\ -247\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26$	596 263 385 506 2032 2052 2095 306 2032 226 2095 306 2032 226 2095 306 2032 226 2095 306 2032 226 2095 306 2032 226 2095 307 226 3095 2095 2095 2095 2095 2095 2095 2095 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 2916\\ 7017\\ 4&474\\ 1&157\\ 7&7299\\ 9&7389\\ -&2730^{2}\\ 1&2737\\ -&2730^{2}\\ 1&2737\\ -&273$	32784535484871122225113445422222272453275194232445454212223325494543244542222222222325519453244542223325	2 4 5 1 1 1 1 1 2 2 7 7 2 2 2 7 7 7 7 4 9 1 1 1 1 2 7 7 2 2 7 7 7 7 7 7 7 7 7 7 7	91 191 94 650 671 405 420 1202 220 274 223 237 -201 184 -274 224 237 -274 224 237 -274 241 -198 211 -198 211 -192 141 -219 200 -179 17 -174 241 -194 147 -214 261 -174 147 -184 16 207 201 207 207 201 207 207 201 207 207 201 207	77777777777777666666555556444444444473333737373322222	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{c} -353\\ -353\\ -4056\\ -405\\ -405\\ -2510\\ -2510\\ -2510\\ -2510\\ -2510\\ -2510\\ -250$	949 9770 97721 9254 9252 1171 9265 9171 9265 9171 9265 9171 9265 9171 9265 9171 9275 9189 9189 9189 9189 9189 9189 9189 918	222222211111111000000000000000000000000	$\begin{array}{c} 2&2&-1\\ -&3512\\ 2&2&-2\\ -&42219\\ -&42219\\ 2&2&-4221\\ 2&2&4219\\ -&2222\\ 2&2&2&2&2\\ 2&2&2&2&2&2\\ 2&2&2&2&2$	57873776 377745422744 2244922744422744 2545244722744472 2449244722747447474747474747474747474747	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} -888\\ -745\\ -745\\ -7287\\ -2871\\ -2871\\ -8978\\ -2978\\ -1786\\ -2978$	$\begin{array}{c} 903\\ 803\\ 2292\\ 2297\\ 1175\\ 2232\\ 2297\\ 1175\\ 2233\\ 2267\\ 1175\\ 2233\\ 2267\\ 1175\\ 2235\\ 2267\\ 1175\\ 2265\\ 1175\\ 2265\\ 1175\\ 2265\\ 1175\\ 2265\\ 1175\\ 2265\\ 1175\\ 2363\\ 1146\\ 4572\\ 2363\\ 1146\\ 3167\\ 2265\\ 1175\\ 2265\\ 2255\\ 2$		2 -249 2 -326 2 -326 2 -326 2 -326 2 -326 2 -326 2 -224 2 -225 3 -246 4 -247 3 -225 3 -225 3 -246 3 -227 2 -235 3 -246 3 -227 2 -235 3 -246 3 -227 2 -235 3 -246 3 -247 3 -225 3 -246 3 -247 3 -225 3 -246 3 -247 3 -225 3 -246 3 -247 3 -225 3 -246 3 -247 3 -245 3 -245	$\begin{array}{c} \textbf{36} \textbf{23} \textbf{215} \textbf{13} \textbf{34} \textbf{19} \textbf{94} \textbf{46} \textbf{64} \textbf{97} \textbf{76} \textbf{11} \textbf{35} \textbf{25} \textbf{64} \textbf{57} \textbf{76} \textbf{91} \textbf{17} \textbf{11} \textbf{35} \textbf{11} \textbf{97} \textbf{77} \textbf{16} \textbf{91} \textbf{17} \textbf{11} \textbf{11} \textbf{17} \textbf{11} 11$

Tableau 6 (suite)

н	ĸ	L	FC	ro	н	K L	FC	ĘΠ	HKL	FC	FO	нк	٤ - ۲	FC	FD	н 1 - Б	(L		FC	FC F0	FC FD H K	FC FD H K L	FC FD H K L FC	FC FD H K L FC F
	777776666666666655555555555644444444444		$\begin{array}{c} -1940\\ -19208\\ $	172417465777449772576774123567718224937129243687732271946577617517357712245977227497725567765732129249	3210124674776541053210441301-01-1	ZZZZZZZZ111111111100000000000000000000	224 3761 3761 3761 3761 3761 3761 3761 3761	212 520 520 520 54 65 50 74 65 55 74 65 55 74 74 74 74 74 74 74 74 74 74 74 74 74	0 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 3144\\ 3149\\ 3149\\ 3160\\ 241\\ 269\\ 269\\ 269\\ 269\\ 269\\ 269\\ 269\\ 269$	333 340 3253 340 3253 314 3253 2279 1718 3252 3354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 4202 53354 1205 2209 11718 1205 2209 11718 1205 2209 11718 1205 2209 11718 1205 2209 11718 1205 2209 11718 1205 2209 11718 1205 2207 11718 110 100 100 100 100 100 100 100 100 1	- 6 6 6 6 4 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 0 0 9 9 9 8 8 8 8 8 8 8 8 8 9 8 9 7 6 7 7 6 6 6 6 6 7 8 9 7 5 7 7 7 8 9 6 7 7 7 7 7 6 6 6 6 7 7 7 9 7 8 9 8 8 7 7 7 7 7 7 6 6 6 6 7 7 7 7 9 10 1 7 1 7 7 9 10 1 7 1 7 7 7 9 10 1 7 1 7 7 1 2 7 9 10 1 7 1 7 7 1 2 7 9 10 1 7 1 7 7 1 2 7		$\begin{array}{c} 334\\ 327\\ 201\\ 385\\ -260\\ -315\\ 385\\ -260\\ -319\\ -315\\ -319\\ -315\\ -319\\ -317\\ -317\\ -305\\ -317\\ -317\\ -305\\ -317\\ -305\\ -317\\ -305\\ -375$	$\begin{array}{c} 331\\ 2198\\ 2198\\ 3278\\ 946\\ 1316\\ 2336\\ 1316\\ 2336\\ 3292\\ 1316\\ 2336\\ 3292\\ 1316\\ 2336\\ 3292\\ 1473\\ 4736\\ 947\\ 3292\\ 1402\\ 3236\\ 2192\\ 1528\\ 2227\\ 1302\\ 5236\\ 2355\\ 2382\\ 1063\\ 2396\\ 2355\\ 2382\\ 1063\\ 2396\\ 2355\\ 2382\\ 1063\\ 2396\\ 2355\\ 2382\\ 1063\\ 2396\\ 2355\\ 2382\\ 1063\\ 2396\\ 2355\\ 2382\\ 1063\\ 2396\\ 2355\\ 2382\\ 1063\\ 2396\\ 2355\\ 2382\\ 1063\\ 2396\\ 2355\\ 2382\\ 1063\\ 2396\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1063\\ 2355\\ 2382\\ 1062\\ 2382\\ 23$			$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	209334768855599112277068781886173827575846677261131875095342113187588555991122121219053054871886555922229712113187505346677261131875053425222971211318750534667726113187505346677261131875053466772611318750534667726113187505346677261131875053466772611318750534667726113187505346677261131875053466772611318750534667726113187505346677261131875053466772611318750534667726113187505346677261131875053467575058466772611318750534677261131875053467575758466772611318750534675750584667726113187505346757575758466772611318750534675757584667726113187505346757575846677261131875053467575758466772611318750534675757575757575757575757575757575757575		000033221000999818777777776666666555555555554644444		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	v2 333333337272222111104337221111866664		944 -138 -138 -139 -357 -357 -357 -357 -264 -167 -206 -207 -267 -267 -267 -2166 -167 -2617 -2617 -2617 -2617 -2617 -2617 -2617 -27577 -27577 -2757 -27577 -27577 -27577 -27577 -27577 -2757	1074 1074 13862 2277 22479 21180 3142 21180 3142 31451 2071 3177 2773 2773 2773 2773 2773 2773 27		9499888887777776668885555444444433	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	215 214 227 217 227 207 207 207 207 207 207 207 207 20	04 -17 -3 -17 -3 -17 -17 -17 -17 -17 -17 -17 -17	327 327 327 325 325 547 272 272 213 -109 7-72 253 -109 7-72 2-72 109 7-72 -210 -220 -220 -220 -220 -220 -220 -22	370 3345 377 332 377 234 272 272 272 272 272 272 272 272 272 27	-4 -4 -4 -4 -4 -4 -4 -4 -4 -4	• • • • • • • • • • • • • • • • • • • •	-2011 334 -325 334 -325 -326 -326 -327 -153 -153 -153 -153 -153 -153 -153 -153	339 214 305 319 305 310 311 305 310 311 305 310 311 305 310 311 305 310 311 305 305 200	4 1 2 1 4 7 8 6 7 8 6 7 8 6 7 8 9 6 0 9 8 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	C 3222221111144321388866644433111199998 4 5555555555555555555555545544433111199998	278 251 306 307 307 307 307 307 307 307 307	23 229 313 538 222 11 14 4 31 22 22 21 12 22 22 12 22 22 12 22 22 12 22 2	2 420101219315619145460573955665966841	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

chaque groupement oxalique sont équivalents (Tableau 4). Ils sont en bon accord avec ceux qui ont été trouvés récemment dans d'autres oxalates (MacDonald & Spink, 1967; Glen, Silverton & Hoard, 1963; Krogman, 1966; Mattes & Krogman, 1964; Cotton & Morehouse, 1964, 1965). Les groupements oxaliques (2) et (3) sont plans aux erreurs expérimentales près (Tableau 5). Par contre dans le cas du groupement oxalique (1), les six atomes s'écartent significativement du plan moyen. Cet effet est assez courant: les deux groupements O-C-O peuvent tourner autour de la liaison C-C, ce qui permet de restreindre l'interaction entre les atomes d'oxygène des deux groupements O-C-O.

Références

- COTTON, F. A. & MOREHOUSE, S. M. (1964). Inorg. Chem. 3, 1603.
- COTTON, F. A. & MOREHOUSE, S. M. (1965). Inorg. Chem. 4, 1377.
- DELAUNAY, B. (1933). Z. Kristallogr. 84, 109.
- FLYNN, C. M., JR. & STUCKY, G. D. (1969). Inorg. Chem. 8, 335.
- FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412.
- GLEN, G. L., SILVERTON, J. V. & HOARD, J. L. (1963). Inorg. Chem. 2, 250.
- GUERCHAIS, J. E. & SPINNER, B. (1965). Bull. Soc. chim. Fr. 4, 1123.

Fig. 3. Caractéristiques du polyèdre de coordination.

- HOARD, J. L. & MARTIN, W. J. (1941). J. Amer. Chem. Soc. 63, 11.
- International Tables for X-ray Crystallography (1969). Vol. I. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 213. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP, Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- KAMENAR, B. & PROUT, C. K. (1970). J. Chem. Soc. A, 14, 2379.
- KRISHNAMURTY, K. V. & HARRIS, G. M. (1961). Chem. Rev. 61, 213.
- KROGMAN, K. (1966). Z. anorg. allgem. Chem. 346, 188.
- KROGMAN, K. (1968). Z. anorg. Chem. 358, 97.
- MACDONALD, T. R. R. & SPINK, J. M. (1967). Acta Cryst. 23, 944.
- MATHERN, G., WEISS, R. & ROHMER, R. (1969). Chem. Commun. p. 70.
- MATTES, R. & KROGMAN, K. (1964). Z. anorg. Chem. 332, 247.
- MOORE, F. M. (1963). Acta Cryst. 16, 1169.

- MULLER, M. (1970). Thèse, Univ. de Strasbourg.
- PIMENTEL, G. C. & MACCLELLAN, A. L. (1960). The Hydrogen Bond, p. 289. New York: Freeman.
- PINSKER, Z. G. (1966). Kristallografia, 11, 741.
- PREWITT, C. T. (1966), SFLS5, A Fortran IV Full-Matrix Crystallographic Least-Squares Program.
- Russ, F. (1902). Z. anorg. Chem. 31, 42.
- SELBIN, J. (1964). J. Chem. Educ. 41, 86.
- SELBIN, J. (1966). Angew. Chem. 15, 736.
- SHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- VAN NIEKERK, J. N. & SCHOENING, F. R. L. (1952). Acta Cryst. 5, 499.
- VAND, V., EILAND, P. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 303.
- VISWAMITRA, M. A. (1962). J. Chem. Phys. 37, 1408.
- VLASOV, L. G., LAPITSKY, A. V., SALIMOV, M. A. & STRIZHKOV, B. V. (1962). Zh. Neorg. Khim. 7, 2533.; Russ. J. Inorg. Chem. 7, 1314.
- WENDLING, E. (1967), Bull. Soc. chim. Fr. 1967, 8.